Towards Safe AI for Automated Driving

Fabian Hüger, Volkswagen & CARIAD EDCC 2021, September 16, 2021

The results, opinions and conclusions expressed in this publication are not necessarily those of Volkswagen Aktiengesellschaft.

We transform automotive mobility

Agenda

We transform automotive mobility

1. Introduction – CARIAD

We deliver Volkswagen's answer to the digitalization of mobility

Our Solutions

Our solutions are structured in technology domains and product enablers

A VOLKSWAGEN GROUP COMPANY

Agenda

We transform automotive mobility

7

Automated Driving and Al

Processing chain of autonomous driving & the use of Al along

A VOLKSWAGEN GROUP COMPANY

8

Arguing Safety in Automated Driving Systems Al goes safety critical

CENTRAL CHALLENGE

SAFETY (FuSa + SOTIF)

<u>Central Challenge</u> in bringing highly automated driving on the road.

Argument on safe functioning needed to allow for acceptance & road permission

COMPLEXITY DRIVERS

Mere driving will not suffice to plausibilize

safety – particularly challenging with respect to software updates over time. "Black-Box" approach seems impracticable

Handling complexity of the driving environment – open world, unknown unknowns, etc.

Need for continual safety monitoring & assurance – continuous monitoring

9

Arguing Safety in Automated Driving Systems Standardization Activities

EXISTING STANDARDS ADDITIONAL NORMS & DOCUMENTS WORK IN PROGRESS ISO Activities UL4600 S() | | | =ASAM working groups ISO 21448 **ISO 26262** Safety alongside Approaching standards for • E/E failures Behavioral safety development process - Leveldependability of AI: (describing performance Classification in ASII -Levels 4 specific, more Al details limitations and triggering No defined ML-specifics (in conditions alongside • Focus within the development ISO/IEC JTC1 SC42 activities discussion for the 3rd mitigation techniques) process - reporting on design (ISO TR5469, ISO/IEC TR edition) decisions with respect to raise 24029) • Highly relevant for non-fully resulting safety is key • ASAM working groups specified perception Consequently: yielding need systems for which DNNs • ISO TR 4804 for a strong traceability of seem to be standard ISO TS 5083 performance and ٠ safety evidence to ISO NWIP Road Vehicles: development decisions. Safety & Al

Agenda

We transform automotive mobility

Acknowledgement: The research leading to these results is funded by the German Federal Ministry for Economic Affairs and Energy within the project "Methoden und Maßnahmen zur Absicherung von KI basierten Wahrnehmungsfunktionen für das automatisierte Fahren (KI-Absicherung)". The authors would like to thank the consortium for the successful cooperation.

KI-Absicherung Project & Approach

ABSICHERUNG

Safe AI for Automated Driving

www.ki-absicherung-projekt.de 🈏 @KI_Familie 🖬 KI Familie

The results, opinions and conclusions expressed in this publication are not necessarily those of Volkswagen Aktiengesellschaft. Gefördert durch:

Bundesministerium für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages Making the safety of AI-based function modules for highly automated driving verifiable

KIABSICHER UNG

Safe AI for Automated Driving

Pedestrian detection

Challenge

Industry consensus (Safe AI): Methodology for joint safety argumentation

Our Approach: Specification

Our Approach: Al Function Pedestrian detection

Semantic Segmentation

2D Bounding Box Detection

Instance Segmentation

3D Bounding Box Detection

Our Approach: Synthetic Data and ML-Lifecycle

Volkswagen AG

Volkswagen AG

Our Approach: ML-Lifecycle-Validation data

Continuous process for identification, specification and generation of synthetic data

M. Mock et al.: An Integrated Approach to a Safety Argumentation for AI-based Perception Functions in Automated Driving, WAISE @SafeCOMP 2021)

Our Approach: DNN-specific Safety Concerns (1/2)

We define **DNN-specific Safety Concerns (SCs)** as underlying issues of DNN-based perception which may negatively affect the safety of a system.

FI-1	INSUFFICIENT GENERALIZATION CAPABILITY Wrong outputs by an AI-based function that was trained on a limited database. Erroneous input to output mapping or wrong approximation.	SC-2.2	INADEQUATE SEPARATION OF TEST AND TRAINING DATA Test data might be correlated to training data which might induce overfitting on test data.	
SC-1.1	UNRELIABLE CONFIDENCE INFORMATION DNNs tend to be overconfident in their predictions under certain conditions or in general outputting unreliable confidence information.	SC-2.3	DEPENDENCE ON LABELLING QUALITY Labelling quality can directly affect the resulting model performance. Moreover, due to missing labelling quality, evaluation results might be misleading.	Based on: O. Willers, S. Sudholt, S. Raafatnia, S. Abrecht: Safety Concerns and Mitigation Approaches Regarding the Us
SC-1.2	BRITTLENESS OF DNNS Non-robustness against common perturbations such as noise or certain weather conditions as well as targeted perturbations known as adversarial examples	SC-2.3.1	MISSING LABEL DETAILS OR META-LABELS Missing meta-labels or label details possibly leads to improper data selection or insufficient training objectives.	of Deep Learning in Safety- Critical Perception Tasks T. Sämann, P.Schlicht, F. Hüger: Strategy to Increase the Safety of a DNN-based Perception for HAD Systems G. Schwalbe, B. Knie, T. Sämann. T. Dobberohul, L.
SC-1.2.1	LACK OF TEMPORAL STABILITY Detection results rapidly changing in time whereas little change occurs in the ground truth	SC-2.4	SPECIFICATION OF THE ODD An incomplete or incorrect ODD specification leads to incomplete data records for training and testing.	Gauerhof, S., V. Rocco: Structuring the Safety Argumentation for Deep Neural Network Based Perception in Automotive Applications
SC-1.3	INCOMPREHENSIBLE BEHAVIOUR Inability to explain exactly how DNNs come to a decision.	SC-2.5	DISTRIBUTIONAL SHIFT OVER TIME A DNN is trained and tested at a certain point in time. Changes will occur naturally and therefore can potentially harm the performance of DNNs.	Functional Insufficiencies
SC-1.4	INSUFFICIENT PLAUSIBILITY Al based functions usually lack basic plausibility checks, which are intended to identify detections of the perception	SC-2.6	UNKNOWN BEHAVIOUR IN RARE CRITICAL SITUATIONS The long tail problem describes the fact that there exists an enormous amount of possibly safety-critical street scenes	DNN- characteristics- related concerns
SC-2.1	function that violate physical laws. DATA DISTRIBUTION IS NOT A GOOD APPROXIMATION OF REAL	SC-3.1	that have a low occurrence probability. SAFETY-AWARE METRICS	Data-related concerns
	WORLD The distribution of data used in the development should be a valid approximation of the ODD in the real world.		Some state-of-the-art metrics only evaluate the average performance of DNNs. Safety-aware metrics are required to sophistically evaluate the performance of DNNs.	Metric-related concerns

DNN-specific Safety Concerns 21

Our Approach: Identify, Measure and & Counteract "DNN-specific Safety Concerns" via MC dropout

VOLKSWAGEN

Uncertainties for Location and Size

Approximating COV($(x_i, y_i)_{i \in \text{samples}}$) using Monte Carlo Dropout (x, y): position) 0 30 60 90 120 130

<image><image><text><image><image>

 $\begin{aligned} & \text{Avg}_{i \in \text{object}}(\text{Entropy}(\text{Avg}_{s \in \text{sample}} \text{ softmax}_{i,s})) \\ & \text{using Monte Carlo Dropout} \end{aligned}$

 Objects:
 average bounding box over sampling from Bounding Box Detection

 Classification:
 average softmax over sampling from Semantic Segmentation

Adressed Safety Concern: Unreliable Confidence via MC dropout

DNN-specific safety concern:

Unreliable Confidence
 Information of DNNs

Method:

- Assessment of uncertainty: Stochastic evaluation of a multitude of model variations (Monte Carlo Dropout)
- Usage at design-time or run-time

Our Approach: Identify, Measure and & Counteract "DNN-specific Safety Concerns"

Adressed Safety Concern: Brittleness of DNNs

- Adressing "Brittleness of DNNs" (Example)
 - Requirement: Robustness = Performance even under reasonable perturbations (gained from ODD definition, data analysis and sensor specs)
 - Metric: Performance under corruption
 - Methods (e.g.)
 - Augmentation Training (AugMix)
 - From a Fourier-Domain Perspective on Adversarial Examples to a Wiener Filter Defense for Semantic Segmentation
 - **Evidence**: Effectiveness of measure via metric

Our Approach: Identify, Measure and & Counteract "DNN-specific Safety Concerns" via AugMix

Adressed Safety Concern: Brittleness of DNNs Corruption Robustness

AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty, D. Hendrycks et al, https://arxiv.org/abs/1912.02781

24

Our Approach: Identify, Measure and & Counteract "DNN-specific Safety Concerns" via AugMix

Adressed Safety Concern: Brittleness of DNNs Corruption Robustness

Augmented Image

Baseline Segmentation

Defended Segmentation

Our Approach: Identify, Measure and & Counteract "DNN-specific Safety Concerns"

Adressed Safety Concern: Brittleness of DNNs Adversarial Attacks

26

From a Fourier-Domain Perspective on Adversarial Examples to a Wiener Filter Defense for Semantic Segmentation, N. Kapoor et al. *https://arxiv.org/abs/2012.01558*

Our Approach: Identify, Measure and & Counteract "DNN-specific Safety Concerns" via Wiener Filters Adressed Safety Concern: Brittleness of DNNs Adversarial Attacks

27

Wiener Filters (WF) as an online denoising module **Steps**:

- 1. Convert input image to DFT domain.
- 2. Apply pre-computed WF as a multiplicative filter.
- 3. Convert to spatial domain using IDFT.
- 4. Feed image to target DNN.

From a Fourier-Domain Perspective on Adversarial Examples to a Wiener Filter Defense for Semantic Segmentation, N. Kapoor et al. *https://arxiv.org/abs/2012.01558*

Our Approach: Explore Mechanisms!

- Heatmap-based Attention Consistency Validation
- Mixture of Experts
- Domain Randomization in Optimized Dataset Selection
- MC Dropout
- Uncertainties For Anomaly Detection
- Hybrid Learning using Concept Enforcement
- Active Learning

...

- Adverserial Training
- Hybrid and robustness-focussed Compression

Approx 80 Mechanisms are developed and evaluated

Inspect, Understand, Overcome: A Survey of Practical Methods for Al Safety

Sebastian Houben¹, Stephanie Abrecht², Maram Akila¹, Andreas Bär¹⁵, Felix Brockherde¹⁰, Patrick Feifel⁸, Tim Fingscheidt¹⁵, Sujan Sai Gannamaneni¹, Seyed Eghbal Ghobadi⁸, Ahmed Hammam⁸, Anselm Haselhoff⁹, Felix Hauser¹¹, Christian Heinzemann², Marco Hoffmann¹⁶, Nikhil Kapoor⁷, Falk Kappel¹³, Marvin Klingner¹⁵, Jan Kronenberger⁹, Fahian Küppers⁹, Jonas Löhdefink¹⁵, Michael Mlynarski¹⁶, Michael Mock¹, Firas Mualla¹³, Svetlana Pavlitskaya¹⁴, Maximilian Poretschkin¹, Alexander Pohl¹⁶, Varun Ravi-Kumar⁴, Julia Rosenzweig¹, Matthias Rottmann⁵, Stefan Rüping¹, Timo Sämann⁴, Jan David Schneider⁷, Elena Schulz¹, Gesina Schwalbo³, Joachim Sicking¹, Toshika Srivastava¹², Serin Varghese⁷, Michael Weber¹⁴, Sebastian Wirkert⁶, Tim Wirtz¹, and Matthias Woehrle²

> ¹Fraunhofer Institute for Intelligent Analysis and Information Systems ²Robert Bosch GmbH ³Continental AG ⁴ Valeo S.A. ⁵University of Wuppertal ⁶Bayerische Motorenwerke AG ⁷ Volkswagen AG ⁸Opel Automobile GmbH ⁹Hochschule Ruhr West ¹⁰umlaut AG ¹¹Karlsruhe Institute of Technology 12 Audi AG ¹³ZF Friedrichshafen AG 14 FZI Research Center for Information Technology ¹⁵Technische Universität Braunschweig ¹⁶QualityMinds GmbH

M. Mock et al.: An Integrated Approach to a Safety Argumentation for AI-based Perception Functions in Automated Driving, WAISE @SafeCOMP 2021)

Our Approach: Summary

Our Approach: Evidence Workstreams

Empowering experts from safety engineering and ML to produce measures and evidences

Agenda

We transform automotive mobility

Summary

Findings & Consequences

- Safe AI is a central challenge for highly automated driving
- KI-Absicherung provides an approach for Safe AI
- Approach may serve as template for the industry and beyond
- Deep integration of Al-specifics into development PMT is necessary (continuous assurance of Al)

Contact:

Fabian Hüger

Artificial Intelligence Safety @Volkswagen CARIAD

Contact: fabian.hueger@volkswagen.de

https://scholar.google.de/citations?user=ISPOi1UAAAAJ

www.ki-absicherung-projekt.de 🈏 @KI_Familie in KI Familie

Thank you!

We transform automotive mobility

