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Autonomous Software-Systems

* Systems which have a certain degree of self-decision capabilities,
e.g., self-driving cars, industrial robots, smart transportation systems, smart communication systems, ...

» Systems with increased capabilities of planning (what, how), scheduling (when, who) and executing complex
functions, with limited human intervention, managing unexpected events, such as faults or hazards

* Not equal to automated systems, which have limited capacity to learn and adapt to unexpected events

* In robotics and automated driving, the main focus for autonomy is to complement human’s capacity to take
decisions based on vast amounts of uncertain raw data

IEEE Spectrum — Self-driving car Universal Robot — UR3 Cobot ABB Robotics — YUMI Cobot Kongsberg Maritime — Yara Birkeland




Norwegian Yara Birkeland

The system is based on a seven-axis robotic arm that
takes the mooring ropes with loops and wraps them
around bollards on the dock.

The mooring system has redundant kinematics, with

built-in movement compensation and track planning.

The vessel’s position against the quay will inform the
robotic arm where each bollard is located, and the
track planning is automatically generated by the
control system.

This electrical autonomous cargo

Larvik and Brevik (31 nautical miles).
Removing up to 40,000 truck : 3
journeys annually. :

YERA
-

vessel will transport fertiliser from 3
Yara's Porsgrunn plant via inland -
waterways to the deep-sea ports of g

Automated Mooring System

N
Source: MacGregor Inc.

Norwegian shore



Testing Non-testable Autonomous Systems

» Testing perception systems needs to generate tests with (environment) hazards
* Test coverage over high-dimensional inputs is limited

* Non-linear motion planning involves solving complex constraint models

» Validation of learning systems needs test oracles which can hardly be defined

* Continuous testing is key but needs high control and more diversity
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An Ideal Cycle of Continuous Integration and
its Timing Challenges

Developer
commit

Timeline

Test Case SeIection/Generatyz{
Developer — Test Suite Reduction
feedback

— Test Case Prioritization
R Deploy
— Test Execution Scheduling
N

+ Test Execution

J‘ — Test preparation time is relative to test execution time! -



Constraint Programming 1. Test Suite 2. Test Constraint-based Scheduling

Reduction ‘ Execution
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Constraint Programming 1. Test Suite | 2. Test Constraint-based Scheduling

Reduction Execution
Scheduling
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Optimal Test Suite Reduction

F;: Requirements @

TC: Test Cases

Optimally Reduced
Test Suite




Constraint Programming (CP)

- /\ Constraint
e Routinely used in Validation & Verification, P::pagg'#on
CP handles efficiently hundreds of thousands llTering

of constraints and variables L Variable
Labeling

e CPis versatile: user-defined constraints, dedicated solvers,
programming search heuristics but it is not a silver bullet
(developing efficient CP models and heuristics requires expertise)

- Global constraints: relations over a non-fixed number
of variables, implementing dedicated filtering algorithms



The nvalue global constraint
[Pachet Roy 1999, Beldiceanu 01]

nvalue(N, V)
Where:

N is a finite-domain variable
V=V, .. V,] isavector of variables

nvalue(N, V) holdsiff N=card( {V.},.,,1 )

nvalue(N, [3, 1, 3]) entails N=2

nvalue(3, [X,, X,]) fails

nvalue(l, [X;, X, X;]) entails X; =X, =X,

Nin 1..2, nvalue(N, [4, 7, X,]) entails X5 in {4,7}, N=2



Optimal Test Suite Reduction with nvalue

However,
only F, F,, F;5
are available
for labeling!

Sol: F,=2,F,=3,F,=2
Optimally Reduced Test Suite

F,in{1, 2,6} F,in{3,4} F;in{2, 5}
nvalue( MaxNvalue, [F,, F,, F;])
Minimize(MaxNvalue)



The global cardinality constraint (gcc)
[Regin AAAI’96]

gee(T, d, V)

Where

T= [T, .. Tyl isavectorof Nvariables
d=I[d,, ..., d,] is avector of k values
V=[V, .. V,] isavector of k variables

Viinl..k,

gec(T, d, V) holds iff V= card({j | T=di})

Filtering algorithms for gcc are based on max-flow computations



Mixt model using gcc and nvalue

F,in{1, 2,6}, F,in{3, 4}, F;in{2, 5}
gCC( [F]_; F2; F3]I [1;2131415;6]1 [V]_I V2; V3; V41 V5; V6] )
nvalue(MaxNvalue, [F,, F,, F5])
Minimize(MaxNvalue)



Model pre-processing

Flin{1,2,6}9 F,=2
as cov(TC,) < cov(TC,) and cov(TC,) < cov(TC,)
withdraw TC, and TC,

F, is covered = withdraw TC;

F,in{3,4} 2 e.g., F, = 3, withdraw TC,

Pre-processing rules can be expressed once
and then applied iteratively



Comparison with CPLEX, MiniSAT, Greedy (uniform costs)

(Reduced Test Suite percentage in 60 sec)
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Other criteria to minimize

Requirement coverage
is always a prerequiste

Optimally Reduced
Test Suite

Execution time!



Time-bounded Test Suite Reduction with Constraint Programming (CP)

Our best CP model: Mixt

Optimal TSR: the core problem Introducing model presolve

@

@ @ . 1 F,in{1,2,6} = F, =2 as cov(TC,) = cov(TC,) < cov(TC;)
«— Optimal-TSR N P—hard : ' wlithdraw TC, an;l TCq ! ’ @
<« = problem! @ : @
F, is covered = withdraw TC, @
: \/_ ) F,in {3,41 = eg., F,= 3, withdraw TC, a ( g 2
Optimal-TSR
Fyin(1, 2,6} Fyin{3,4) Fyin (2,5} We proposed an iterative algorithm to apply these @
gee( (Fy, Fay Fa), (1,2,3,4,5,6), (Vi Vi, Vi, Vi, Vi, Vo) ) irig Pules o simplify the prob!
) . ) _ nalue(MaxNvalue, (Fy, Foy Fa) preprocessing rules to simplify the problem
Optimal-TSR: find a minimal subset of TC such that each F is covered at least once il L
(Practical importance but NP-hard problem!) - An instance of Minimum Set Cover label{minimiza{Maxtivalue)]
- -
— -
. ; -
CP with global constraints (nvalue, gcc) and search heuristic and presolve | _ ¥
Time-contract solving of the multi-criteria optimisation problem ==
—-—
s : i s .‘ i i ! : i : P
[ TD1 | TD2 | TD3 | TD4 |
| [ Requirements 1000 1000 1000 2000~ |
A. Gotlieb and D. Marijan - FLOWER: Optimal Test Suite Reduction As a Network Maximum Flow — ACM Int. Symp. on Soft. Testing and Toitcaes: ]| 2000 Il 3000 | S000° | 5000

Density 20 20 30

Analysis (ISSTA'14), San José, CA, Jul. 2014.

M. Mossige, A. Gotlieb and H. Meling - Generating Tests for Robotized Painting Using Constraint Programming - In Int. Joint Conf. on Artificial
Intelligence (1JCAI-16) - Sister Conference Best Paper Track. New York City, 2016.

A. Gotlieb and D. Marijan - Using Global Constraints to Automate Regression Testing - Al Magazine 38, no. Spring (2017).



Constraint Programming 1. Test Suite | 2. Test Constraint-based Scheduling

Reduction Execution
Scheduling

,f;””/ 3. ML for testing B

autonomous tpug 1
>
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Test Suite] | reward Prioritized itput n
T fi Test Cases >
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Constraint-Based Scheduling Assighment of Tasks to Agents such that:

1. Task execution is not interrupted or paused
2. Agents are maximally occupied

3. Tasks sharing a global resource are not
executed at the same time

4. Diversity of assignment of tasks to agents is
ensured

Agents Goal:

with limited time or Schedule as much tasks as possible on available agents
resources capacity such that the overall execution time is minimized



Test Case Execution Scheduling

(LM, G,d,g,f)

T: a set of Test Cases Disjunctive scheduling,

M: a set of Machines, e.g., robots non-preemptive,

G: a set of (non-shareable) resources non-shareable resources,
machine-independant

d: T 2 N estimated duration execution time

g: T 229 usage of global resources
f: T 2 2™ possible machines

Function to optimize:
TimeSpan: the overall duration of test execution T
(in order to minimize the round-trip time)

In practice, global optimality is desired but not mandatory, it’s more important to control Ts w.r.t Te
—> Time-contract global optimization
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6, ..
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The CUMULATIVE global constraint  [Aggoun & Beldiceanu AAAI’93]

CUMULATIVE( t, d, r, m)

Where

t=(t, ..., ty) is a vector of tasks, each #,in §; .. E|
d=d, ..., d,) is a vector of task duration

r = (r, ..., y) is a vector of resource consumption rates

m is a scalar

N
CUMULATIVE (7, d, r, m) holds 1iff z i

1
itsi




Using the global constraint CUMULATIVE

Test Druration Executable on U=z of global resource

CUMULATIVE((2},..,t,0), (d},...d;y), (1, .., 1), 3), . : 212222 s
M, . .Mgin 1..3, 3 E m1, m2, m3 rl
M,=1,My=2 My=3, M,y in {13}, 44 e -
(E,<S;0rE;<S,), (E,<S,0or E,<S,), 6 2 mlmzm3
(E;<S,orE,<S,), " . o
Max(MaxSpan, (E,, ..., E,y)), t9 3 m3
LABEL(MINIMIZE(MaxSpan), (S,,...S,,), (M,...,M,,)) s L g e

An optimal solution:
S;=05,=485=8S5,=0S8=485,=78,=28=9,
Sip=3,
M,=1,M,=1, M;=1, M,=2, Ms=2, M;,=2,M,=1,
Mg=2, My=3 M,,=3

MaxSpan = 11

M. Mossige, A. Gotlieb, H. Spieker, H. Meling and M. Carlsson - Time-aware Test Case Execution Scheduling for Cyber-Physical Systems - In Proc. of Principles of Constraint Prog. (CP’17), 2017.



Limitations of this model

Static model — In practice, robots and test cases are not necessarily available
at each Cl cycle 2> Need a more dynamic model!

Historical data about test case success/failure is not taken into
consideration!

Diversity in scheduling among Cl cycles is not handled



A New Approach Based on Priority and Affinity

. Test results from n
previous runs (Pass/Fail)

. Developer priority

. Test duration

. Time since last execution

Modeled as a Multi-Cycles Assignment Problem
Computing priorities based on A, B, C (Priority)
Combined with D (Affinity) with several heuristics
Incremental solving from Cl cycle to Cl cycle




Affinity: more diversity in the test execution process

.
l 3 cycles

= Since last

exec.
1 10 cycles since last k. 2 cycles since last
- ‘ exec. 90 | exec.

1 cycle
since last

LR

O cycle '-
since last -
. exec.

exec.




Rotational Diversity

Definition 1. Multi-Cycle General Assignment Problem

Maximize Z Z TijVij (1)

ic Ak jeTH

subject to Z TijWij < b;, Vie Ak 2)
jeT™
Y g 21, VieTs (3
iEAR

with
k : Index of the current cycle
AF : A set of integers 7 labeling mn agents
T* : A set of integers j labeling n tasks

b; : Capacity of agent i

v;; : Value of task j when assigned to agent i (4) 100
w;; + Weight of task j on agent i il
& o
1 Task j is assigned to agenti A i € C¥ 5
Tij AR EMIATES, (5) 5 w0
0 otherwise ®
= 85
2
= 80

Weighted Partial Profits (WPP) Vij = )‘? '

Priority only (FOP)

Affinity only (FOA)

A
Vi; = Pij

L
Uz’j == Olij

i 1f v > max; AP®
Objective Switch (0S) vij = Py T JETH 5

a;; otherwise
o Vi 202 . aP
Product Combination (PC) ij = Pij " Q45
B -y U
max max p 77 max max j
ic Ak jeTk ic Ak jeTk
Agents 20 20 20 30
Tasks 750 1500 3000 3000 Total
% 1 Foa 1524 657 305 3@5 27045
0S/10 14 (22.2) 6(155) 3(94) 3(84) 26(13.9)
¢ 0S8/20 9(18.6) 6(153) 3(9.2) 3(83) 21(12.9)
0S/30 7(16.9) 5(14.3) 3(9.1) 3(8.1) 18(12.1)
0S/40 7(16.2) 4(13.1) 3(89 3(7.9) 17(11.5
PC 15(24.0) 7(144) 3(8.3) 3(7.5) 28(13.6)
WPP 14(24.1) 714.2) 3(7.3) 3(7.0) 27(13.2)
3(15. k . . 3 (9.
0S/10 0S/20 OS/30 OS/40 WPP FOP (15.7) 0(10.8) 0(7.1) 0(4.6) (9.6)

FOA

PC

Strategy

(b) Diversity: Full rotations of all tasks (Avg. rotations per task)



SWMOD: Deployment of Time-aware Test Case Execution
Scheduling at ABB Robotics

Microsoft*

_~1500 lines of SICStus Prolog Code with CP(FD) VieualStudio  ® python’ SIGSfIU's
- Fully integrated into the MS-TFS Continuous Integration feamFoundationserver

- Using the global constraint binpacking + rotational diversity

- Deployed at ABB since Feb. 2019

CP with global constraints (cumulative, binpacking) and rotational diversity
can solve the test execution scheduling problem

Constraint-based Scheduling

“ ll Il “SWMOD deployed at ABB Robotics and used every day to schedule tests
" l' l. throughout several ABB centers in the world (Norway, Sweden, India, China)”

Morten Mossige, Arnaud Gotlieb, Helge Spieker, Hein Meling, and Mats Carlsson. Time-aware test case execution scheduling for cyber-physical systems. In Proc. of Principles of Constraint
Programming (CP'17), Aug. 2017.
H. Spieker, A. Gotlieb and M. Mossige - Rotational Diversity in Multi-Cycle Assignment Problems - In Proc. of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19). Feb. 2019.



Constraint Programming 1. Test Suite 2. Test Constraint-based Scheduling

Reduction Execution
Scheduling

/;;/”ﬁ 3. ML for testing

autonomous -
>
(e . Systemns
States: Actions:
Test Suite] | reward Prioritized itput n
T fi Test Cases >
75,

' Ti : .
- Environment:
+=__ ClI Cycle
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Test Prioritization: Learning from previous test runs

Motivation:
Adapting priorities to the most interesting test cases based on past test verdicts (from previous Cl cycles)

* Considering test case meta-data only (test verdicts, execution time, ...)
* Limited memory of past executions / test verdicts

* Using Reinforcement Learning for priorising test cases

>[ Agent

States:

Test Suite
T

l

reward
i

«=.{ Environment:
<L cicyde




. 3 Industrial data sets (1 year of Cl cycles)
Rewa rd FU nctions a nd NAPFD: Normalized Average Percentage of Faults Detected

Experimental Evaluation

ABB Paint Control ABB IOF/ROL GSDTSR

(a) Failure Count Reward

1.0

—— Network — — Tableau

os ||

Reward Function 1. Failure Count Reward o
0.4

NAPFD

| —_

0.2

reward/*"(t) = |TSI®™| (VteT) o

1.0
0.8
. . 2 06
Reward Function 2. Test Case Failure Reward o l
42? 0.4
. - 0.2
; 1 — t.verdict; ifteTS;
rewardi“f“i (t) = - 0.0
0 otherwise
1.0
Reward Function 3. Time-ranked Reward a
=
reward!"™(t) = |TS!*"| — t.verdict; x Z 1 | -
teeTSI%HA
rank(t)<rank(t)

H. Spieker, A. Gotlieb, D. Marijan and M. Mossige Reinforcement Learning for Automatic Test Case Prioritization and Selection in Continuous Integration
In Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA’17). New York, NY, USA: ACM, 2017.



Constraint Acquisition for Testing Collaborative Robots

Motivation: Learning how to safely interact with a collaborative robot

B 100000 80 & —

A A" ™ m; (\\m
{aa m, "\ . : Vs
° i W s
P s 5 o = LQCN GEQCA

( 0,0, ...,0) ? ! Instance sigalE = —= R =
_ kgt N e Ins 108 45 228 47% 112 26%
Y A P Ins_ 1025 145 177 55% | 201 59%
T Ins_10_46 268 189  78% 106 63%
: vi=o. v+ v, Ins 258 300 | 2,034 60% 36d 17%
Semantics Analysisof Vs >0.Vz+E Vyp Ins_25_28 1,100 695 46% 748  47%
observed trajectories Ins_25_58 2253 703 76% 794  78%
Ins 508 1225 | 7308 53% 748 12%
. . . . ens Ins_50.48 7.680 | 1,500 58% | 1.763 59%
Using active constraint acquisition to learn temporal Ins 6069 8316 | 1.689 63% | 2051 65%
constraints (task precedence constraints) and deploy it to Ins 1008 4950 [ 23754 44% | 1,634 10%
) Ins_100.32 | 20,395 | 24276 69% | 1,653 34%
generate test schedules for collaborative robots Ins 10037 | 23942 | 24974 76% | 1.629 40%

B. Belaid, N. Belmecherie, A. Gotlieb, N. Lazaar, H. Spieker — GEQCA: Generic Qualitative Constraint Acquisition — Under Review



Adaptive Metamorphic Testing

Motivation: Learning which Metamorphic Relation works best to test vision-based systems

Input layer

Hidden layers QOutput layer

Output 1
e

Output n
—»

Artificial Neural Networks

| 9) Zoomer Robot Dog

8) TALN
TensorFlow.org - Image classification — dataset of 10,000 images

7) Riba Medical Robot

Object Detection case study — MS COCO dataset of 5,000 images

50
40
30
20

Using Contextual Bandits
(Reinforcement Learning) to learn how
to select metamorphic relations

- Adaptive Metamorphic Testing

B Tetraband
- W Baseline

Failure Rate (in %)

e M
& & A
Q‘o q_c‘\

\)Q' Q,\é .-}\z' "9 "‘,;\\ P m_\\ ‘i’.,(\' \.>\Q
K

8

(a) Image Classification

Airplane Automobile Bird Cat Deer Dog Frog  Horse Ship Truck Avg.
Blur 10.60 1140 13.10 .81 730 1350 17.70 9.00  6.00 6.20 1046
Flip L/R 2,90 1.00 110 6.71 2.20 6.80 1.30 2.40 0.90 2.40 3.07
Flip U/D 14.90 T4.60 3780 33.13  59.10 53.90 29.30 9240 T220 13.30 5106
Grayscale 1.70 540 28.10 701 1810 26,00  14.30 6.70 1.80 530 12,13
Invert 16.50 2040 2950 3313 4140 7030 41.80 3830 27.30 3570 36.33
Rotation 25,49 3709 3543 1770 69.00 46,10 2063 6044 4244 50,01 40.43
Shear 11.22 199 26,69 3579 1545 51.97  15.63 10.24 19.78 55,24 30.70
Avg. 12.33 23.41 2496 2060 3465 3837 20,10 3564 2477 2831 2631
Inble 1: CIFAR-10 dataset: Effects of MRs by the true class of the image. Each cell value shows the percentage of images
in the class, which are wrongly classificd after applying the MR. Every class contains 1000 images. Rotation and Shear arc

parameterized by 30 degrees

H. Spieker, A. Gotlieb — Adaptive Metamorphic Testing with Contextual Bandits — Journal of Systems and Software. 165: 110574 (2020)

A. Gotlieb, D. Marijan and H. Spieker: Testing Industrial Robotic Systems: A New Battlefield!

In Software Engineering for Robotics, 465p. Edited by A. Cavalcanti, B. Dongol, R. Hierons, J. Timmis, J. Woodcock ed. Springer Nature, 2021.



Take Away Message

Testing autonomous systems brings new interesting challenges for software V&V research

Some Al techniques such as Constraint Programming (CP) and global constraints are already very
successful in test case generation, test suite reduction and test execution scheduling

Testing autonomous systems such as collaborative robots is challenging as:
- Expected behaviours cannot be specified in advance
- Interactions with humans involve more safety issues

‘im.{{h‘nf,
g | &L "

We are currently exploring the usage of Reinforcement
Learning and Active Learning methods for testing
collaborative robots

tus Centre on Software Validation a

(C) Copyright 2017 CERTUS Centre No copy or of reproduction

without authorisation clarifies of the author




The VIAS Dept. at Simula 5

\ ':ﬁ
3 Permanent Research Scientists, 3 PhD Students, 2 Postdoc

Partners: ABB Robotics, CISCO Systems, Kongsberg Maritime, Cancer Registry, Tax/Toll Dept., etc.
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