
Leveraging AI Methods for Testing Non-testable
Autonomous Systems

Arnaud Gotlieb
Simula Research Laboratory

Norway

EDCC 2021 - Munich, Germany
Sep. 15, 2021

1/35

2

Autonomous Software-Systems
• Systems which have a certain degree of self-decision capabilities,

e.g., self-driving cars, industrial robots, smart transportation systems, smart communication systems, …

• Systems with increased capabilities of planning (what, how), scheduling (when, who) and executing complex
functions, with limited human intervention, managing unexpected events, such as faults or hazards

• Not equal to automated systems, which have limited capacity to learn and adapt to unexpected events

• In robotics and automated driving, the main focus for autonomy is to complement human’s capacity to take
decisions based on vast amounts of uncertain raw data

Universal Robot – UR3 CobotIEEE Spectrum – Self-driving car Kongsberg Maritime – Yara BirkelandABB Robotics – YUMI Cobot

Norwegian Yara Birkeland
This electrical autonomous cargo
vessel will transport fertiliser from
Yara's Porsgrunn plant via inland
waterways to the deep-sea ports of
Larvik and Brevik (31 nautical miles).
Removing up to 40,000 truck
journeys annually.

The system is based on a seven-axis robotic arm that
takes the mooring ropes with loops and wraps them
around bollards on the dock.
The mooring system has redundant kinematics, with
built-in movement compensation and track planning.
The vessel’s position against the quay will inform the
robotic arm where each bollard is located, and the
track planning is automatically generated by the
control system.

Automated Mooring System

Norwegian shore

Source: MacGregor Inc.

Testing Non-testable Autonomous Systems

4/352

• Testing perception systems needs to generate tests with (environment) hazards

• Test coverage over high-dimensional inputs is limited

• Non-linear motion planning involves solving complex constraint models

• Validation of learning systems needs test oracles which can hardly be defined

• Continuous testing is key but needs high control and more diversity

An Ideal Cycle of Continuous Integration and
its Timing Challenges

Developer
commit

Build

Deploy

Test

Developer
feedback

Test Case Selection/Generation

Test Suite Reduction

Test Case Prioritization

Test Execution Scheduling

Timeline

+ Test Execution

 Test preparation time is relative to test execution time!

Reinforcement Learning

2. Test
Execution
Scheduling

3. ML for testing
autonomous

Systems

1. Test Suite
Reduction

Deployment of “Intelligent” Continuous Testing at ABB
Robotics

Constraint Programming Constraint-based Scheduling

7Reinforcement Learning

2. Test
Execution
Scheduling

3. ML for testing
autonomous

Systems

1. Test Suite
Reduction

Deployment of “Intelligent” Continuous Testing at ABB
Robotics

Constraint Programming Constraint-based Scheduling

7/352

Optimal Test Suite Reduction

F1

F2

F3

TC 1

TC 2

TC 3

TC 4

TC 5

TC 6

Optimally Reduced
Test Suite

Fi: Requirements
TC: Test Cases

Similar to the Vertex
Cover problem in a

bipartite graph
NP-hard
problem!

Constraint Programming (CP)

Domain
Filtering

Variable
Labeling

Constraint
Propagation• Routinely used in Validation & Verification,

CP handles efficiently hundreds of thousands
of constraints and variables

• CP is versatile: user-defined constraints, dedicated solvers,
programming search heuristics but it is not a silver bullet
(developing efficient CP models and heuristics requires expertise)

 Global constraints: relations over a non-fixed number
of variables, implementing dedicated filtering algorithms

The nvalue global constraint
[Pachet Roy 1999, Beldiceanu 01]

nvalue(N, V)
Where:

N is a finite-domain variable
V V1, …, Vk is a vector of variables

N i 𝑖 𝑖𝑛 1. . 𝑘nvalue(N, V) holds iff

nvalue(N, [3, 1, 3]) entails N = 2
nvalue(3, [X1, X2]) fails
nvalue(1, [X1, X2, X3]) entails X1 = X2 = X3
N in 1..2, nvalue(N, [4, 7, X3]) entails X3 in {4,7}, N=2

Sol: F1 = 2, F2 = 3, F3 = 2
Optimally Reduced Test Suite

F1 in {1, 2, 6}, F2 in {3, 4}, F3 in {2, 5}
nvalue(MaxNvalue, [F1, F2, F3])
Minimize(MaxNvalue)

F1

F2

F3

TC 1

TC 2

TC 3

TC 4

TC 5

TC 6

Optimal Test Suite Reduction with nvalue

However,
only F1, F2, F3
are available
for labeling!

The global_cardinality constraint (gcc)
[Regin AAAI’96]

gcc(T, d, V)
Where
T = [T1, …, TN] is a vector of N variables
d = [d1, …., dk] is a vector of k values
V = [V1, …, Vk] is a vector of k variables

i= card({j | Tj=di})gcc(T, d, V) holds iff

Filtering algorithms for gcc are based on max-flow computations

F1 in {1, 2, 6}, F2 in {3, 4}, F3 in {2, 5}
gcc([F1, F2, F3], [1,2,3,4,5,6], [V1, V2, V3, V4, V5, V6])
nvalue(MaxNvalue, [F1, F2, F3])
Minimize(MaxNvalue)

F1

F2

F3

TC1

TC2

TC3

TC4

TC5

TC6

Mixt model using gcc and nvalue

Model pre-processing

F1 in {1, 2, 6}  F1 = 2
as cov(TC1)  cov(TC2) and cov(TC6)  cov(TC2)
withdraw TC1 and TC6

F1

F2

F3

TC1

TC 2

TC 3

TC4

TC5

TC6

F3 is covered  withdraw TC5

F2 in {3,4}  e.g., F2 = 3, withdraw TC4

Pre-processing rules can be expressed once
and then applied iteratively

Comparison with CPLEX, MiniSAT, Greedy (uniform costs)
(Reduced Test Suite percentage in 60 sec)

Other criteria to minimize

F1

F2

F3

TC1

TC4

TC5

TC6

Requirement coverage
is always a prerequiste

Optimally Reduced
Test Suite

Execution time!

TC2

TC3

1 min

5 min

3 min

3 min

1 min

1 min

Time-bounded Test Suite Reduction with Constraint Programming (CP)

CP with global constraints (nvalue, gcc) and search heuristic and presolve
Time-contract solving of the multi-criteria optimisation problem

NP-hard
problem!

A. Gotlieb and D. Marijan - FLOWER: Optimal Test Suite Reduction As a Network Maximum Flow – ACM Int. Symp. on Soft. Testing and
Analysis (ISSTA'14), San José, CA, Jul. 2014.
M. Mossige, A. Gotlieb and H. Meling - Generating Tests for Robotized Painting Using Constraint Programming - In Int. Joint Conf. on Artificial
Intelligence (IJCAI-16) - Sister Conference Best Paper Track. New York City, 2016.
A. Gotlieb and D. Marijan - Using Global Constraints to Automate Regression Testing - AI Magazine 38, no. Spring (2017).

Reinforcement Learning

2. Test
Execution
Scheduling

3. ML for testing
autonomous

Systems

1. Test Suite
Reduction

Deployment of “Intelligent” Continuous Testing at ABB
Robotics

Constraint Programming Constraint-based Scheduling

18/352

Constraint-Based Scheduling

Tasks
with distinct
characteristics

Agents
with limited time or
resources capacity

Assignment of Tasks to Agents such that:

1. Task execution is not interrupted or paused
2. Agents are maximally occupied
3. Tasks sharing a global resource are not
executed at the same time
4. Diversity of assignment of tasks to agents is
ensured

Schedule

Goal:
Schedule as much tasks as possible on available agents
such that the overall execution time is minimized

Test Case Execution Scheduling

T: a set of Test Cases
M: a set of Machines, e.g., robots
G: a set of (non-shareable) resources

d: T  N estimated duration
g: T  2G usage of global resources
f: T  2M possible machines

Function to optimize:
TimeSpan: the overall duration of test execution TE
(in order to minimize the round-trip time)

(T, M, G, d, g, f)
Disjunctive scheduling,
non-preemptive,
non-shareable resources,
machine-independant
execution time

In practice, global optimality is desired but not mandatory, it’s more important to control TS w.r.t TE

 Time-contract global optimization

m3

m2

m1

A simple
example

d f g

r1

Test Cases: t1, t2, t3, t4, t5, t6, t7, t8, t9, t9, t10

The CUMULATIVE global constraint [Aggoun & Beldiceanu AAAI’93]

CUMULATIVE(t, d, r, m)

Where
t = (t1, …, tN) is a vector of tasks, each ti in Si .. Ei

d = (d1, …., dN) is a vector of task duration
r = (r1, …, rN) is a vector of resource consumption rates
m is a scalar

𝑖

ே

௜ୀଵ

ti ≤ t ≤ ti + di

CUMULATIVE (t, d, r, m) holds iff

Using the global constraint CUMULATIVE

CUMULATIVE((t1,..,t10), (d1,..,d10), (1, ..,1), 3),
M1,..,M6 in 1..3,
M7 = 1, M8 = 2, M9 = 3, M10 in {1,3},
(E2 ≤ S3 or E3 ≤ S2), (E2 ≤ S4 or E4 ≤ S2),
(E3 ≤ S4 or E4 ≤ S3),
MAX(MaxSpan, (E1, …, E10)),
LABEL(MINIMIZE(MaxSpan), (S1,..,S10), (M1,..,M10))

An optimal solution:
S1 = 0, S2 = 4, S3 = 8, S4 = 0, S5 = 4, S6 = 7, S7 = 2, S8 = 9,
S10 = 3,
M1 = 1, M2 = 1, M3 = 1, M4 = 2, M5 = 2, M6 = 2, M7 = 1,
M8 = 2, M9 = 3, M10 = 3
MaxSpan = 11

M. Mossige, A. Gotlieb, H. Spieker, H. Meling and M. Carlsson - Time-aware Test Case Execution Scheduling for Cyber-Physical Systems - In Proc. of Principles of Constraint Prog. (CP’17), 2017.

Limitations of this model

• Static model – In practice, robots and test cases are not necessarily available
at each CI cycle  Need a more dynamic model!

• Historical data about test case success/failure is not taken into
consideration!

• Diversity in scheduling among CI cycles is not handled

T2, T5,
T34 T45,

T55
T4,

T56,
T67

T7,
T23

T3, T6,
T45,
T78

A. Test results from n
previous runs (Pass/Fail)

B. Developer priority
C. Test duration
D. Time since last execution

- Modeled as a Multi-Cycles Assignment Problem
- Computing priorities based on A, B, C (Priority)
- Combined with D (Affinity) with several heuristics
- Incremental solving from CI cycle to CI cycle

A New Approach Based on Priority and Affinity

Affinity: more diversity in the test execution process

90

2 cycles since last
exec.

10 cycles since last
exec.

3 cycles
since last
exec.

1 cycle
since last
exec.

0 cycle
since last
exec.

Rotational Diversity Priority only (FOP)

Affinity only (FOA)

Product Combination (PC)

Objective Switch (OS)

Weighted Partial Profits (WPP)

“SWMOD deployed at ABB Robotics and used every day to schedule tests
throughout several ABB centers in the world (Norway, Sweden, India, China)”

- ~1500 lines of SICStus Prolog Code with CP(FD)
- Fully integrated into the MS-TFS Continuous Integration
- Using the global constraint binpacking + rotational diversity
- Deployed at ABB since Feb. 2019

SWMOD: Deployment of Time-aware Test Case Execution
Scheduling at ABB Robotics

Morten Mossige, Arnaud Gotlieb, Helge Spieker, Hein Meling, and Mats Carlsson. Time-aware test case execution scheduling for cyber-physical systems. In Proc. of Principles of Constraint
Programming (CP'17), Aug. 2017.
H. Spieker, A. Gotlieb and M. Mossige - Rotational Diversity in Multi-Cycle Assignment Problems - In Proc. of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19). Feb. 2019.

Constraint-based Scheduling

CP with global constraints (cumulative, binpacking) and rotational diversity
can solve the test execution scheduling problem

Reinforcement Learning

2. Test
Execution
Scheduling

3. ML for testing
autonomous

Systems

1. Test Suite
Reduction

Deployment of “Intelligent” Continuous Testing at ABB
Robotics

Constraint Programming Constraint-based Scheduling

29/352

Test Prioritization: Learning from previous test runs
Motivation:
Adapting priorities to the most interesting test cases based on past test verdicts (from previous CI cycles)

• Considering test case meta-data only (test verdicts, execution time, ...)
• Limited memory of past executions / test verdicts

• Using Reinforcement Learning for priorising test cases
Implemented with two

distinct memory models
(tableau, ANN) and three

reward functions

Reward Functions and
Experimental Evaluation

3 Industrial data sets (1 year of CI cycles)
NAPFD: Normalized Average Percentage of Faults Detected

H. Spieker, A. Gotlieb, D. Marijan and M. Mossige Reinforcement Learning for Automatic Test Case Prioritization and Selection in Continuous Integration
In Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA’17). New York, NY, USA: ACM, 2017.

Constraint Acquisition for Testing Collaborative Robots

Using active constraint acquisition to learn temporal
constraints (task precedence constraints) and deploy it to
generate test schedules for collaborative robots

B. Belaid, N. Belmecherie, A. Gotlieb, N. Lazaar, H. Spieker – GEQCA: Generic Qualitative Constraint Acquisition – Under Review

Motivation: Learning how to safely interact with a collaborative robot

Adaptive Metamorphic Testing
Motivation: Learning which Metamorphic Relation works best to test vision-based systems

H. Spieker, A. Gotlieb – Adaptive Metamorphic Testing with Contextual Bandits – Journal of Systems and Software. 165: 110574 (2020)
A. Gotlieb, D. Marijan and H. Spieker: Testing Industrial Robotic Systems: A New Battlefield!
In Software Engineering for Robotics, 465p. Edited by A. Cavalcanti, B. Dongol, R. Hierons, J. Timmis, J. Woodcock ed. Springer Nature, 2021.

Object Detection case study – MS COCO dataset of 5,000 imagesTensorFlow.org - Image classification – dataset of 10,000 images

Using Contextual Bandits
(Reinforcement Learning) to learn how
to select metamorphic relations
 Adaptive Metamorphic Testing

• Testing autonomous systems brings new interesting challenges for software V&V research

• Some AI techniques such as Constraint Programming (CP) and global constraints are already very
successful in test case generation, test suite reduction and test execution scheduling

• Testing autonomous systems such as collaborative robots is challenging as:
- Expected behaviours cannot be specified in advance
- Interactions with humans involve more safety issues

Take Away Message

We are currently exploring the usage of Reinforcement
Learning and Active Learning methods for testing
collaborative robots

The VIAS Dept. at Simula

3 Permanent Research Scientists, 3 PhD Students, 2 Postdoc

Partners: ABB Robotics, CISCO Systems, Kongsberg Maritime, Cancer Registry, Tax/Toll Dept., etc.

Several National and European Projects (RCN-FRIPRO, RCN-IKTPLUSS, H2020, etc.)

1st Simula-Inria Associate Team (2021)

Thanks to Helge Spieker, Dusica Marijan, M. Bachir Belaid, M. Kumar
Ahuja, Aizaz Sharif, Pierre Bernabé.

